Questions

Please use a single file for all questions. Give reasons to your answers or provide a counterexample. Please provide the following data in the pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each question is worth 4 marks.
Question 1.
Let $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a quadratic form given by a symmetric matrix $M \in$ $M(2 \times 2 ; \mathbb{R})$, i.e., $M=M^{\top}$ and

$$
q((x, y))=\left[\begin{array}{ll}
x & y
\end{array}\right] M\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

If $\operatorname{det} M=0$ does there exist a vector $(x, y) \in \mathbb{R}^{2},(x, y) \neq \mathbf{0}$ such that

$$
q((x, y))=0 ?
$$

Answer 1.
Yes, it does exist. If $\operatorname{det} M=0$ the columns of matrix M are linearly independent, i.e., there exists a non-zero(!) vector $v \in \mathbb{R}^{2}$ such that

$$
M v=\mathbf{0}
$$

In particular,

$$
v^{\top} M v=v^{\top}(M v)=0
$$

If you are not convinced, check Kronecker-Capelli Theorem (Lecture 7).
In down-to-earth terms, if $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ and $v=\left[\begin{array}{r}c \\ -b\end{array}\right]$, then

$$
M v=\left[\begin{array}{c}
\operatorname{det} M \\
0
\end{array}\right]=0
$$

In particular $q(v)=0$. If $c=b=0$, take $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Question 2.

Let $V \subset \mathbb{R}^{3}$ be a proper subspace of \mathbb{R}^{3} (i.e., $\operatorname{dim} V=1$ or $\operatorname{dim} V=2$). Let

$$
P_{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

denote the (linear) orthogonal projection onto V and let

$$
S_{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

denote the (linear) orthogonal reflection about V. Does it follow that

$$
S_{V} \circ P_{V}=P_{V} \circ S_{V} ?
$$

Answer 2.

Yes, it does. For any $v \in \mathbb{R}^{3}$ let

$$
v=w+u
$$

where $w \in V$ and $u \in V^{\perp}$. Then

$$
\begin{gathered}
P_{V}(v)=P_{V}(v)(w+u)=w \\
P_{V}(w-u)=w \\
S_{V}(w)=w \\
S_{V}(v)=w-u
\end{gathered}
$$

hence

$$
\begin{gathered}
S_{V}\left(P_{V}(v)\right)=S_{V}(w)=w \\
P_{V}\left(S_{V}(v)\right)=P_{V}(w-u)=w
\end{gathered}
$$

Question 3.

If $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} A>0$, $\operatorname{det} B>0$ does it follow that

$$
\operatorname{det}\left(A^{2}\right)+2 \operatorname{det}(A B)+\operatorname{det}\left(B^{2}\right)>0 ?
$$

Answer 3.
Yes, it does.

$$
\operatorname{det}\left(A^{2}\right)+2 \operatorname{det}(A B)+\operatorname{det}\left(B^{2}\right)=(\operatorname{det} A+\operatorname{det} B)^{2}>0
$$

Question 4.

Let $A, B \in M(m \times n ; \mathbb{R})$ be matrices such that

$$
A \xrightarrow{c_{i}+\alpha c_{j}} B,
$$

for some $i, j \in\{1,2, \ldots, n\}$ and some $\alpha \in \mathbb{R}$ (i.e., one is obtained from the other by the column operation $c_{i}+\alpha c_{j}$). Does it follow that the reduced (row) echelon form of matrix A is the same as the reduced (row) echelon form of matrix B ?

Answer 4.

No, it does not. Consider

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \xrightarrow{c_{3}+c_{1}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],
$$

where matrices A and B are in the reduced row echelon form.

Question 5.

Let $A, B \in M(2 \times 2 ; \mathbb{R})$ be two matrices and let vector $v \in \mathbb{R}^{2}$ be an eigenvector of matrix A and simultaneously an eigenvector of matrix B (corresponding to possibly different eigenvalues). Is vector $B v \in \mathbb{R}^{2}$ an eigenvector of matrix A ?

Answer 5.

No, it isn't. If $B v=\mathbf{0}$ then $B v$ is not an eigenvector (since it is the zero vector).

